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Abstract— Recently, discriminative correlation filters (DCFs)
have achieved enormous popularity in the tracking community
due to high accuracy and beyond real-time speed. Among differ-
ent DCF variants, spatially regularized discriminative correlation
filters (SRDCFs) demonstrate excellent performance in suppress-
ing boundary effects induced from circularly shifted training
samples. However, SRDCF have two drawbacks which may be the
bottlenecks for further performance improvement. First, SRDCF
needs to construct an element-wise regularization weight map
which can lead to poor tracking performance without careful
tunning. Second, SRDCF does not guarantee zero correlation
filter values outside the target bounding box. These small but
nonzero filter values away from the filter center hardly contribute
to target location but induce boundary effects. To tackle these
drawbacks, we revisit the standard SRDCF formulation and
introduce padless correlation filters (PCFs) which totally remove
boundary effects. Compared with SRDCF that penalizes filter
values with spatial regularization weights, PCF directly guarantee
zero filter values outside the target bounding box with a binary
mask. Experimental results on the OTB2013, OTB2015 and
VOT2016 data sets demonstrate that PCF achieves real-time
frame-rates and favorable tracking performance compared with
state-of-the-art trackers.

Index Terms— Visual tracking, correlation filter, boundary
effect, model complexity.

I. INTRODUCTION

V ISUAL tracking is a classical computer vision prob-
lem with many applications in multimedia such as

video surveillance, augmented reality and human-computer
interaction [1]–[3]. Generic tracking means single-camera,
single-object, short-term and model-free tracking [4], [5],
which estimates the trajectory of a target in the whole video
given only its initial state (usually an axis-aligned rectangle)
in the first frame. Short-term implies re-detection modules
are unnecessary while model-free means neither pre-learned
object models nor class-specific prior knowledge are per-
mitted. Despite significant progress in recent years, robust
tracking under complicated scenarios is still challenging due
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Fig. 1. A brief comparison of our approach with SRDCF [6], Staple [7],
DSST [8] and KCF [9] on the Jogging and Skiing sequences from
OTB2015 [4]. Our tracker demonstrates excellent robustness in presence of
heavy occlusion in Jogging and fast motion in Skiing.

to illumination change, self-deformation, partial occlusion, fast
motion and background clutter.

Most trackers follow the tracking-by-detection framework
to locate the target frame by frame. Generally, tracking-
by-detection based trackers can be divided into generative
methods [10]–[12] and discriminative methods [9], [13], [14]
according to different appearance representation schemes.
Generative methods focus on representing target appearance
and ignore background information, which leads to drift in
complex scenarios. On contrast, discriminative methods pose
single object tracking as a binary classification task to discrim-
inate the object from its surrounding background. In recent
years, Discriminative Correlation Filters (DCF) based discrim-
inative trackers have achieved enormous popularity due to high
computational efficiency and fair robustness. With the circular
structure, DCF transform computationally consuming spatial
correlation into efficient element-wise operation in the Fourier
domain and achieve extremely high tracking speed. Based on
standard DCF formulation, different variants of correlation
filters have been proposed to boost tracking performance using
multi-dimensional features [15], robust scale estimation [8],
non-linear kernels [9], long-term memory components [16],
complementary cues [7] and target adaptation [17].

However, standard DCF based trackers significantly suffer
from boundary effect induced by the periodic assumption.
Due to the circularity, correlation filters are trained with
wrapped-around circularly shifted versions of the target. As a
result, the detection scores are only accurate near the center of
the search area, which leads to a very restricted target search
area at the detection step. Therefore, in presence of fast motion
and heavy occlusion, standard DCF based trackers are easily
to drift to the background as show in Fig.1. To tackle this
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Fig. 2. Comparison of the tracking frameworks in SRDCF and PCF. SRDCF employ the quadratic regularization weights and derives a correlation filter with
large spatial support. Nonzero values are assigned to the background region. The influence of the background information in the detection stage leads to drift
in challenging tracking scenarios. On contrast, PCF use the binary weights and derives small correlation filters with zero padded in the neighborhood. The
nonzero filter values exist only in the target bounding box, which increases the discriminative power of the correlation filter by emphasizing the appearance
information in the target region. Moreover, PCF maintain less trainable filter values in the model and reduce the risk of over-fitting.

problem, Spatially Regularized Discriminate Correlation Fil-
ters (SRDCF) [6] introduce a spatial regularization component
into the standard DCF formulation. Compared with standard
DCF, SRDCF have two following advantages. First, SRDCF
pad the target image patch with large background padding to
guarantee a large search area. Second, the spatial regularization
component penalizes filter values away from the target center
with large spatial weights to suppress the boundary effects.
With the spatial regularization component, the descendant
variants of SRDCF, DeepSRDCF [18] and CCOT [19], have
won the VOT2015 [20] and VOT2016 [21] Challenges.

Despite the above achievements, we argue that SRDCF
has the following drawbacks which would be the bottlenecks
for further performance improvement. First, the regularization
weights in SRDCF are highly video and dataset dependent,
which if not performed correctly can lead to poor track-
ing performance. Second, the learned correlation filter is a
trade-off between the desired correlation response and spatial
regularization, and thus SRDCF cannot guarantee the filter
values are zero outside of object bounding box. Third, these
small but nonzero background filter values hardly contribute
to target location but lead to boundary effects and massive
trainable parameters, which increase the model complexity and
risk of over-fitting.

In this paper, we revisit the core SRDCF formulation and
develop Padless Correlation Filter (PCF) for boundary-effect
free tracking. Different from SRDCF which penalize back-
ground filter coefficients with regularization weights, PCF
directly removes background coefficients with a binary mask
(see Fig.2). Meanwhile, PCF achieve better generalization
capacity with only one regularization parameter to set while
SRDCF need to carefully tune a element-wise regulariza-
tion weight map. We perform comprehensive experiments on
three benchmark datasets: OTB2013 [4] with 50 sequences,
OTB2015 [5] with 100 videos and VOT2016 [21] with
60 videos. With less trainable parameters and boundary

effects, PCF achieves an absolute gain of 3.8% in AUC
on OTB2015 and a relative gain of 9.0% in EAO on
VOT2016 compared with the baseline SRDCF.

II. RELATED WORKS

There are extensive surveys on visual tracking in the
literature. We refer interested readers to [5] and [21] for a
thorough review of existing tracking algorithms. Due to space
limitations, here we focus on correlation filter based trackers.

A. Discriminative Correlation Filters

Discriminative Correlation Filters (DCF) are initially devel-
oped for the object detection task [22] and are introduced
into visual tracking until recent years. The pioneer work
was done by Bolme et al. [23] who introduced Minimum
Output Sum of Squared Error (MOSSE) filters and achieved
a tracking speed of hundred of frames per second (fps). Later,
correlation filters have been extended to multi-dimensional
features such as HOG [24] or Color-Names [25] and achieve
a notable performance improvement. Henriques et al. [9]
formulated learning correlation filters as a ridge regression
problem and introduced the kernel trick into correlation filters.
To achieve fast scale estimation, a discriminative scale space
tracker (DSST) [26] is proposed to achieve real-time scale
adaptive tracking. Staple [7] combines the correlation filter
response with the global color histogram score to achieved
surprisingly robustness against object deformation. LCT [16]
combines DCF with an online trained random fern classifier
for re-detection to achieve long-term robust tracking.

B. Variants For Conventional DCF

Recent works have found that some of the inherent limi-
tations of DCF can be overcome directly by modifying the
conventional DCF formulation used for training. For example,
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by adapting the target response (used for ridge regression
in DCF) as part of a new formulation, Bibi et al. [17]
significantly decrease target drift while remaining computa-
tionally efficient. Liu et al. [27] introduce part-based tracking
strategy into DCF to reduce sensitivity to partial occlusion and
better preserve object structure. To improve the discriminative
capacity of DCF, Mueller et al. [28] introduce background
context into the DCF tracking framework while maintaining
high frame-rates.

C. Reducing Boundary Effects for Correlation Filters

In recent years, numerous tracking benchmarks [4],
[29], [30] and tracking challenges [20], [21] have seen contin-
uous performance improvements of visual tracking. However,
traditional DCF based trackers seldom demonstrate to be
competitive in these benchmarks or challenges. We argue that
this inferior performance is induced by boundary effects orig-
inated from the periodic assumption. Due to boundary effects,
the detection scores of DCF are only accurate near the target
center, which leads to a restricted search area. To suppress
boundary effects and expand the search area, SRDCF [6] learn
a correlation filter with large spatial support and thus maintain
a larger search area in the detection stage. Filter values
outside the object bounding box are penalized with higher
regularization weights to highlight the central area of the cor-
relation filter. Afterwards, the descendant variant of SRDCF,
CCOT [19], employs the integration of multi-resolution fea-
tures in the continuous domain and achieves the top rank on
the VOT2016 challenge [21]. Based on CCOT, ECOT [31]
improves the tracking speed and robustness by performing
feature dimensionality reduction with a factorize convolution
operator and reducing training samples in the learning model.

III. OUR APPROACH

In this section, we adopt SRDCF as our baseline and present
a theoretical framework for learning padless correlation filters.
Our formulation is generic and can be extended to CCOT [19]
and ECOT [31] for further performance gain.

A. Baseline SRDCF

Before the detailed discussion of our proposed padless
correlation filters, we first revisit the detailed derivation of the
SRDCF formulation. For convenience reasons, we adopt the
same notation as in [6]. In the SRDCF formulation, the aim is
to learn a multi-channel spatially regularized convolution filter
h from a set of training examples {(xk, yk)}t

k=1. Each training
sample xk is assumed to have the spatial size M × N and
consists of a d-dimensional feature extracted from an image
region. We denote feature layer l ∈ {1, · · · , d} of xk by xl

k .
The desired output of yk are scalar values over the domain �,
which include a label for each location in the sample xk .
The desired correlation filter h is obtained by minimizing the
following target function,

ε(h) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

xl
k ∗ hl − yk

∥∥∥∥∥

2

+
d∑

l=1

∥∥∥w · hl
∥∥∥

2
. (1)

Here, · denotes point-wise multiplication, * denotes circular
convolution and the weights αk ≥ 0 determine the impact of
each training sample. The regularization weights w get lower
values near the target center and higher values away from the
target center. In this way, correlation filter values away from
the target center are penalized to small values.

By applying Parseval’s theorem to (1), the correlation filter
h can equivalently be obtained by minimizing the resulting
loss function over the DFT coefficients ĥ,

ε(ĥ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

x̂ l
k · ĥl − ŷk

∥∥∥∥∥

2

+ λ

d∑

l=1

∥∥∥ŵ ∗ ĥl
∥∥∥

2
. (2)

In (2), ŵ∗ ĥl follows the convolution property of the inverse
Fourier transform. Therefore, a vectorization of (2) gives,

ε(ĥ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

D(x̂l
k)ĥ

l − ŷk

∥∥∥∥∥

2

+ λ

d∑

l=1

∥∥∥C(ŵ)ĥl
∥∥∥

2
. (3)

Here, bold letters denote a vectorization of the correspond-
ing scalar valued functions and D(v) denotes the diagonal
matrix with the elements of the vector v in its diagonal. The
M N × M N matrix C(ŵ) represents circular 2D convolution
with the weights ŵ, i.e. C(ŵ)ĥl = vec(ŵ ∗ ĥl). Each row in
C(ŵ) thus contains a cyclic permutation of ŵ.

The loss function in (3) is simplified by defining the fully
vectorized filter as the concatenation ĥ = ((ĥ1)T . . . (ĥd )T )T

where T represents the transpose of a vector,

ε(ĥ) =
t∑

k=1

αk

∥∥∥Dk ĥ − ŷk

∥∥∥
2 + λ

∥∥∥W ĥ
∥∥∥

2
. (4)

Here we have defined the concatenation Dk = (D(x̂1
k) . . .

D(x̂d
k )) and W to be the d M N ×d M N block diagonal matrix

with each diagonal block being equal to C(ŵ).
To obtain a simple expression of (4), we define the sample

matrix D = [DT
1 . . . DT

t ]T the diagonal weight matrix, � = α1
I ⊕ . . . ⊕ αt I and the label vector ŷ = [ŷT

1 . . . ŷT
t ]T . The

minimizer of (4) is found by solving the following normal
equations,

(DH �D + λW H W )ĥ = DH �ŷ. (5)

It’s worth noting that the d M N × d M N coefficient
matrix DH �D +λW H W is a symmetric positive-semidefinite
matrix. There, SRDCF and its descendant variants CCOT,
ECOT employ the Preconditioned Conjugate Gradient (PCG)
method [32] to iteratively solve (5), since PCG was shown to
effectively utilize the sparsity structure of the problem.

B. Padless Correlation Filters

As shown in (1), the learned correlation filter is a com-
promise between the desired correlation response and spatial
regularization, and thus SRDCF can’t guarantee the filter
values are zero outside of object bounding box. To remove the
nonzero filter values outside of object bounding box, we intro-
duce a cropping operator b into the SRDCF formulation to
substitute the spatial weights w. The cropping operator b is
a binary mask with zero values outside the target bounding



7724 IEEE SENSORS JOURNAL, VOL. 18, NO. 18, SEPTEMBER 15, 2018

Algorithm 1 : Each Cycle of Optimization Using the Preconditioned Conjugate Gradient Method

1: Initialize f̂ and the preconditioner.
2: Repeat
3: Apply inverse FFT to f̂ and crop: B f̂ = vec(F (b · F−1( f̂ )))
4: Perform element-wise multiplication in the frequency domain: DT �DB f̂ and DT �ŷ
5: Apply inverse FFT then crop: BT DT �DB f̂ and BT DT �ŷ
6: Compute the residual vector: r = BT DT �ŷ − BT DT �DB f̂ − λf̂
7: Compute the search direction p and search scale s from r with the PCG method.
8: Update f̂ = f̂ + sp.
9: Until f̂ has converged or the maximum number of iterations has reached.

box (see Fig.2). Compared with SRDCF which penalize the
correlation filter values with w in the regularization term,
our padless correlation filters impose b directly in the target
response regression term as .

ε( f ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

xl
k ∗ (b · f l) − yk

∥∥∥∥∥

2

+ λ

d∑

l=1

∥∥∥ f l
∥∥∥

2
. (6)

In (6), the first term is responsible for target response
regression while the second term is a regularization term to
avoid over-fitting. The correlation filter values in f outside the
target bounding box are removed by the cropping operator b.
Therefore, in this paper, we term our approach as Padless
Correlation Filters (PCF), which means the filter values in the
padding area of f are all set to zeros and do not contribute
to the target response. Compared with SRDCF, PCF only
maintain non-zero filter values inside the target bounding box
and thus reduce the number of trainable coefficients in the
tracking model. In this way, the computational burden and
risk of over-fitting are significantly reduced.

1) PCF Training: Similar to (1), (6) can be transformed
into the Fourier domain as following:

ε( f̂ ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

x̂ l
k · (b̂ ∗ f̂ l) − ŷk

∥∥∥∥∥

2

+ λ

d∑

l=1

∥∥∥ f̂ l
∥∥∥

2
. (7)

In (7), b̂∗ f̂ l follows the convolution property of the inverse
Fourier transform. Therefore, a vectorization of (7) gives,

ε( f̂ ) =
t∑

k=1

αk

∥∥∥∥∥

d∑

l=1

D(x̂l
k)C(b̂)f̂ l − ŷk

∥∥∥∥∥

2

+ λ

d∑

l=1

∥∥∥f̂ l
∥∥∥

2
. (8)

Here, the M N × M N matrix C(b̂) represents circular 2D
convolution with the function b̂, i.e. C(b̂)f̂ l = vec(b̂ ∗ f̂ l) =
vec(F (b · f )). Each row in C(b̂) thus contains a cyclic
permutation of b̂.

Similar to (3), the loss function in (8) is simplified
by defining the fully vectorized filter as the concatenation
f̂ = ((f̂1)T . . . ( ˆfd)T )T ,

ε(f̂) =
t∑

k=1

αk

∥∥∥Dk B f̂ − ŷk

∥∥∥
2 + λ

∥∥∥f̂
∥∥∥

2
. (9)

Here we have defined the concatenation Dk = (D(x̂1
k) . . .

D(x̂d
k )) and B to be the d M N × d M N block diagonal matrix

with each diagonal block being equal to C(b̂).

Different from (4), the minimizer of (9) is found by solving
the following normal equations,

(B H DH �DB + λI )f̂ = B H DH �ŷ. (10)

It’s worth noting that the d M N × d M N coefficient matrix
BT DT �DB +λI is a symmetric positive-semidefinite matrix.
Our task is to solve the vectorized correlation filter f̂ from the
linear equation system in (10). Following SRDCF and CCOT,
we employ the Preconditioned Conjugate Gradient method to
iteratively solve (10).

In fact, it is not necessary to form the big d M N × d M N
symmetric positive-semidefinite matrix (BT DT �DB + λI ) in
memory in each cycle of Conjugate Gradient Optimization.
The left-hand side of the normal equation (10) is computed
from right to left by performing the matrix-vector and trans-
pose matrix-vector multiplication. BT and B performs as
the augmenting and cropping operators respectively. D is a
t × d block matrix with each block as a M N × M N diago-
nal matrix D(x̂1

k). Therefore, the matrix-vector multiplication
related to D can be computed as efficient element-wise multi-
plication. Different from (2) which exhaustively computes the
circular correlation of ŵ ∗ ĥl in the frequency domain, PCF
computed the element-wise multiplication as b· f l in the spatial
domain. b· f l can be equally computed by cropping the central
area of f l and padding it with zeros in the neighborhood.

Given the initial guess f̂0 in each cycle of conjugate gradient
optimization, the correlation filter f̂ can be learned with a
few iterations in each frame according to the PCG method.
A full description of the optimization procedure can be seen
in Algorithm 1. It’s worth to mention that we adopt the
Jacobi preconditioner as Diag(DT �D+λI ) to ensure a small
condition number of (10). Our detailed implementation for the
PCG optimization can be found in the source codes available
at https://github.com/moqimubai/PCF.

2) PCF Detection: At the detection stage, the location of
the target in a new frame t is estimated by applying the filter
f̂t−1 that has been updated in the previous frame. Let z denote
the test sample extracted in the current frame and f̂ denote
the correlation filter learned in the frequency domain in the
previous frame. The correlation scores S f (z) at all locations
in the image region are computed as follows,

S f (z) = F−1

{
D∑

l=1

ẑl · F (b · F−1( f̂ l)))

}
. (11)



LI et al.: LEARNING PCFs FOR BOUNDARY-EFFECT FREE TRACKING 7725

Algorithm 2 : Visual Tracking Algorithm Based on Padless Correlation Filters
Input:

Initial target state in the first frame p1 = {x1, y1, w1, h1}.
Output:

Estimated target state pt = {xt , yt , wt , ht } in each frame.
From t=2 to T , do
1: Crop the image patch It centered at pt−1 in frame t and extracted detection features zt from It .
2: Estimate the target state pt in frame t with zt according to III-B.2.
3: Crop a new image patch I ′

t centered at pt and extracted training features xt from I ′
t .

4: Calculate f̂t from xt with f̂t−1 as the initial guess using the Preconditioned Conjugate Gradient method as described
in III-B.1.

Here, · denotes point-wise multiplication, F denotes the
DFT of a function and F−1 denotes the inverse Fourier
transformation.

Note that only the filter values in the target bounding box
of f , namely b · F−1( f̂ l), are activated, which reduces the
boundary effects in the detection stage.

In terms of scale estimation, we adopt the same strategy as
SRDCF by extracting multi-resolution samples at the previous
target location. The scale level with the highest maximal
detection score is then used to update the target location
and scale. An outline of our proposed method is shown in
Algorithm 2.

IV. EXPERIMENTS

Here, we present a comprehensive evaluation of PCF on
the OTB2013, OTB2015 and VOT2016 datasets. Readers are
encouraged to read [5] and [21] for more details about each
dataset.

Evaluation Methodology: OTB2013 [4] is a popular track-
ing benchmark dataset containing 50 fully annotated videos
with substantial variations. OTB2015 is the extension of
OTB2013 and contains 100 video sequences. Compared
with OTB2013, more challenging sequences are added into
OTB2015. On OTB2013 and OTB2015, we use the precision
and success plots in one-pass evaluation (OPE) [5] to rank all
the trackers. The precision plots show the percentage of frames
whose estimated location is within the given threshold distance
of the ground truth. The success plots show the ratios of
successful frames when the threshold varies from o to 1, where
a successful frame means its overlap with the ground truth is
larger than this given threshold. For the VOT2016 dataset,
tracking performance is evaluated in terms of both accuracy
and robustness. The accuracy score is based on the overlap
with ground truth, while the robustness is determined by fail-
ure rate. Different from OTB2013 and OTB2015, the trackers
in VOT2016 are restarted at each failure.

Comparison Scenarios: In our experiments, we implement
two versions of our tracker, namely PCF_HOG with hand-
crafted features (HOG) and PCF_deep with convolutional
features. On OTB2013 and OTB2015, we compare PCF_HOG
and PCF_deep with state-of-the-art trackers in the literature.
On VOT2016, we compare PCF_deep with DeepSRDCF [18]
and the top 8 trackers on the challenge.

Implementation Details: The regularization parameter λ
in (6) is set to 1e-5 in both PCF_HOG and PCF_deep.

Fig. 3. Precision and success plots for all trackers on OTB2013 (first row)
and OTB2015 (second row).

We set the search area to 4 times the target size and use
5 iterations in each cycle of conjugation gradient optimization.
Parameters are fixed for all videos in each datasets. Our track-
ers implemented in Matlab use Piotr’s Matlab Toolbox [33]
for hand-crafted feature extraction and Matconvnet [34] for
deep feature extraction. The deep features are extracted from
the first convolutional layer in the imagenet-vgg-m-2048
model [35]. We perform the experiments on a PC with Intel
i7 CPU (3.4 GHz) together with a single NVIDIA GeForce
GTX Titan X GPU. A different type of CPU or GPU can lead
to a slight difference in tracking performance on benchmarks.
The source codes and experimental results are available at
https://github.com/moqimubai/PCF.

A. OTB2013 and OTB2015

Here, we provide a comparison of PCF_HOG and
PCF_deep with state-of-the-art methods from the litera-
ture: CCOT [19], DeepSRDCF [18], BACF [36], SRDCF [6],
Staple [7], CFNet [37] and Siamfc [38]. Similar to PCF,
we also introduce two version of the CCOT tracker, namely
CCOT_HOG and CCOT_deep. For fair comparison, all
the four trackers (PCF_HOG, PCF_deep, CCOT_HOG and
CCOT_deep) employ 50 training samples in filter learning,
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TABLE I

QUANTITATIVE COMPARISON OF THE DISTANCE PRECISION (DP), OVERLAP PRECISION (OP) AND TRACKING SPEED (FPS)

OF ALL TRACKERS ON OTB2015. THE BEST AND SECOND BEST VALUES ARE HIGHLIGHTED IN COLOR

Fig. 4. Success ratio plots on 11 attributes of the OTB2015 dataset. Trackers are ranked by their AUC scores. Ours method has achieved consistently the
superior performance over the state-of-the-art.

namely setting t to 50 in (7). All HOG-based track-
ers, CCOT_HOG, PCF_HOG, BACF and SRDCF, employ
31-dimensional HOG features using 4 × 4 cell size while
CCOT_deep, PCF_deep and DeepSRDCF employ shallow
deep Features extracted from the first convolutional layer in
the VGG-m network [35]. CFNet and Siamfc are two trackers
which employ the deep architecture and are trained in an
end-to-end fashion.

Quantitative Comparison: Fig.3 compares PCF_deep and
PCF_HOG with the other trackers on OTB2013 and OTB2015,
where PCF_deep achieves the highest area-under-curve (AUC)
scores in the precision and success plots over both datasets.
On OTB2013, PCF_HOG with hand-crafted features even
performs better than DeepSRDCF with convolutional features,
which demonstrates the effectiveness of our approach in han-
dling boundary effects and reducing model complexity.

Table I presents distance precision (DP) at 20 pixels, overlap
precision (OP) at IoU = 0.5 and tracking speeds (FPS) of

all compared trackers on OTB2015. All deep trackers are run
with GPU. Due to the lower model complexity, PCF_HOG
(24.5 fps) operates faster than CCOT_HOG (19.2 fps) and
SRDCF (3.6 fps).

Attribute Based Comparison: Fig.4 illustrates the attribute
based evaluation of all trackers on the OTB2015 dataset.
All sequences in the OTB2015 dataset are annotated by
11 different visual attributes, namely: illumination variation,
scale variation, occlusion, deformation, motion blur, fast
motion, in-plane rotation, out-of-plane rotation, out-of-view,
background clutter and low resolution. In Fig.4, PCF_deep
achieves the best performance on 8 out of 11 attributes,
which demonstrates the superiority of our approach in chal-
lenging tracking scenarios. For the rest three attributes (fast
motion, illumination variation and motion blur), PCF_deep
still achieves higher performance than most trackers including
DeepSRDCF, BACF, SRDCF, CCOT_HOG, Staple, CFNet
and Siamfc. Even compared with the top tracker CCOT_deep
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Fig. 5. Tracking screenshots of PCF_deep, CCOT_deep and DeepSRDCF. The videos (from top to bottom) are Matrix, Skiing, Ironman, CarScale, Box and
Girl2 from the OTB2015 dataset.

on these three attributes, our PCF_deep achieves only a
slight absolute decrease of 0.4% on fast motion, 0.3% on
illumination variation and 0.8% on motion blur. While our
padless correlation filters improve tracking performance on
most attributes, there are certain categories that benefit more
than others. The most significant improvement is achieved in
the case of background clutter, deformation and occlusion,
which can be attributed to the excellent discriminative power
and large spatial support of our padless correlation filters.

To intuitively exhibit the superiority of our proposed padless
correlation filters, Fig.5 shows screenshots of the tracking
results from 6 challenging videos on the OTB2015 dataset. For
fair comparison, we compare PCF_deep against CCOT_deep
and DeepSRDCF. All three trackers employ convolutional
features. The videos (from top to bottom) are Matrix, Skiing,
Ironman, CarScale, Box and Girl2. It is easy to see that
PCF_deep performs better than CCOT_deep and DeepSRDCF
in presence of fast motion (Matrix,Skiing), illumination vari-
ation (Ironman), scale variation (CarScale) and partial or full
occlusion (Box,Girl2).

B. VOT2016

The visual object tracking (VOT) challenge is a competition
between short-term, model-free visual tracking algorithms.
Different from OTB2015, for each sequence in this dataset,
a tracker is restarted whenever the target is lost (i.e. at a
tracking failure). On VOT2016 dataset, four primary measures
are used to analyze tracking performance: expected average

Fig. 6. Comparison of our approach with DeepSRDCF and the top 8 trackers
in terms of EAO on VOT2016.

overlap (EAO), robustness (R), accuracy (A) and equivalent
filter operation (EFO).

Table II and Fig.6 shows the comparison of PCF_deep with
DeepSRDCF and the top 8 participants in the VOT2016 chal-
lenge. In the comparison, CCOT (0.331) achieves a higher
EAO score than PCF_deep (0.303). This can be attributed
to the convolutional features from multiple layers CCOT
has adopted. Their feature representation performs better
than ours from single layer output. It’s worth noting that
PCF_deep (0.303) achieves a relative gain of 9.0% in EAO on
VOT2016 compared with DeepSRDCF (0.276). As indicated
in the VOT2016 report [21], the strict state-of-the-art bound
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TABLE II

STATE-OF-THE-ART COMPARISON OF EXPECTED AVERAGE OVERLAP (EAO), ROBUSTNESS (FAILURE RATE), ACCURACY,

AND SPEED (IN EFO UNITS) ON VOT2016. THE BEST AND SECOND BEST VALUES ARE HIGHLIGHTED IN COLOR

Fig. 7. State-of-the-art comparison on VOT2016. In the ranking plot (left) the
accuracy and robustness rank for each tracker is displayed. The AR plot (right)
shows the accuracy and robustness scores.

is 0.251 under EAO metrics. Therefore, PCF_deep (0.303)
exceeds this bound and can be regarded as state-of-the-art. It’s
worth noting that PCF_deep ranks second in terms of accuracy
and achieves the fastest tracking speed (with GPU) among all
the trackers. Fig.7 shows a visualization of the overall results
in terms of accuracy and robustness on the VOT2016 dataset.

V. CONCLUSION

We revisit the core SRDCF formulation and counter the
issues of boundary effects and model complexity. We introduce
an ideal binary weight function into the DCF formulation
and develop Padless Correlation Filters (PCF). Accordingly,
new training and detection strategies are designed for model
updating and target location during tracking. Without nonzero
values outside of the rectangular object area in the correlation
filter, PCF remove boundary effects and reduce the number
of trainable parameters in the tracking model. Our method
demonstrates the competitive accuracy and superior tracking
speed compared to state-of-the-art DCF-based and deep track-
ers over an extensive evaluation. In our future work, PCF will
be extended to infrared object tracking [39] or RGBD object
tracking [40] for more general applications.
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